Une fabuleuse aventure qui débuta dans les années 1960
Un télescope spatial est un télescope placé au-delà de l'atmosphère. Le télescope spatial présente l'avantage par rapport à son homologue terrestre de ne pas être perturbé par l'atmosphère terrestre. Celle-ci déforme le rayonnement lumineux (...infrarouge, visible, ultraviolet...) et en absorbe une grande partie (surtout infrarouge et ultraviolet).Depuis les années 1960, les progrès de l'astronautique ont permis d'envoyer dans l'espace des télescopes spatiaux de différents types, dont le plus connu est le télescope spatial Hubble. Ces instruments jouent désormais un rôle important dans la collecte d'informations sur les planètes éloignées, les étoiles, les galaxies et les autres objets célestes.
Un télescope spatial est un télescope installé dans l'espace pour observer les planètes éloignées, les galaxies et d'autres objets célestes.On peut ranger les télescopes spatiaux en deux grandes catégories :
Les télescopes qui observent l'ensemble de la voûte céleste ;
Les télescopes qui font des observations sur des fractions choisies du ciel.
Dans l'idéal le satellite d'observation astronomique est placé sur une orbite la plus éloignée possible des perturbations lumineuses ou électromagnétiques. La Terre et la Lune peuvent être une grande source de perturbation. Pour y échapper certains satellites astronomiques sont placés sur des orbites qui les maintiennent éloignés en permanence loin de ces deux astres : point de Lagrange L2 de l'ensemble Terre-Soleil (par exemple Planck, Herschel), orbite héliocentrique dans le sillage de la Terre avec quelques semaines de décalage (par exemple Kepler). Par le passé les satellites en orbite basse ont toutefois été largement majoritaires. Certains satellites astronomiques sont sur des orbites terrestres à forte excentricité (Integral, Granat, XMM-Newton) pour permettre des observations à l'extérieur des ceintures de Van Allen (les particules à l'intérieur des ceintures perturbent les mesures) et disposer de longues durées d'observation ininterrompues (une périodicité longue limite le nombre d'interruptions liés au passage derrière la Terre).
La résolution des télescopes dans le visible est aujourd'hui meilleure que celle des télescopes terrestres : elle est seulement limitée par la charge utile des lanceurs existants et le coût de construction d'un gros télescope spatial. La réalisation du lanceur lourd SLS pourrait permettre le lancement d'un télescope spatial doté d'un miroir de 8 à 17 mètres (projet Advanced Technology Large-Aperture Space Telescope).
Le satellite d'observation astronomique comme les autres satellites doit se maintenir sur une orbite et être pointé vers l'objet observé pour accomplir sa mission ce qui nécessite de disposer d'ergols. La durée de vie est donc conditionnée par la quantité d'ergols emportée, car les opérations de maintenance d'un satellite, comme celles réalisées pour le télescope Hubble, sont trop coûteuses pour être envisagées dans un cas normal. Certains satellites d'observation astronomique, comme les télescopes infrarouge, utilisent des capteurs qui nécessitent un liquide de refroidissement (hélium liquide). Celui-ci s'épuise progressivement ce qui limite la durée durant laquelle le satellite peut réaliser ses meilleures mesures.
Plusieurs phénomènes constituent des freins à l'observation astronomique depuis le sol : la turbulence naturelle de l'air, qui perturbe le cheminement des photons et réduit la qualité de l'image, limite la résolution aux environs d'une seconde d'arc même si certains télescopes terrestres (tel que le Very Large Telescope) peuvent contrebalancer les turbulences grâce à leur optique adaptative. Dans le domaine du rayonnement visible, un télescope spatial peut observer un objet cent fois moins lumineux que ce qui peut être techniquement observable depuis le sol. En outre, une grande partie du spectre électromagnétique est complètement (Gamma, X, etc.) ou partiellement (infrarouge et ultraviolet) absorbée par l'atmosphère et ne peut donc être observée que depuis l'espace. L'observation lumineuse depuis le sol est également de plus en plus handicapée par la pollution lumineuse due aux nombreuses sources de lumière artificielles.Seuls le rayonnement visible et les fréquences radios ne sont pas atténués par l’atmosphère terrestre. L'astronomie spatiale joue un rôle essentiel pour les autres longueurs d'onde. Elle a pris aujourd'hui une grande importance grâce à des télescopes comme Chandra ou XMM-Nexton.
Aux États-Unis, la création d’un télescope spatial est évoquée pour la première fois en 1946 par Lyman Spitzer, un professeur et chercheur de l’université Yale, qui démontre dans son article intitulé « Les avantages d’un observatoire extra-terrestre dans le domaine de l’astronomie » qu’un télescope placé dans l’espace offre un grand nombre d’avantages car explique-t-il l’atmosphère terrestre filtre et déforme la lumière venue des étoiles. Même le télescope le plus perfectionné ne peut pas échapper à ce phénomène alors qu’un télescope situé en orbite le peut. Par ailleurs l’atmosphère bloque une grande partie du spectre électromagnétique comme le rayonnement X émis par des phénomènes de haute température dans les étoiles et dans d’autres objets si bien que celui-ci ne peut pas être détecté. Un télescope spatial pourrait permettre aux scientifiques de mesurer également ce type d’émission
Les premiers observatoires astronomiques n'étaient que des projectiles lancés par une fusée-sonde pour sortir brièvement de l'atmosphère ; aujourd'hui, les télescopes sont mis en orbite pour des périodes qui peuvent aller de quelques semaines (missions embarquées sur la navette spatiale américaine) à quelques années. Un grand nombre d’observatoires spatiaux ont été mis en orbite et la plupart d’entre eux ont amélioré de manière importante nos connaissances cosmologiques. Certains de ces observatoires ont achevé leurs missions, tandis que d'autres sont toujours en opération. Les télescopes spatiaux sont lancés et maintenus par les agences spatiales : la NASA, l'Agence Spatiale Européenne, l'agence spatiale japonaise et Roskosmos pour la Russie.
On peut classer les satellites astronomiques spatiaux en fonction des longueurs d'onde qu'ils observent : rayonnement gamma, rayonnement X, ultraviolet, lumière visible, infra-rouge, radio millimétrique et radio. Le terme de télescope est généralement réservé aux instruments qui utilisent une optique ce qui n'est pas le cas des satellites astronomiques observant le rayonnement Gamma, X et radio. Certains satellites peuvent observer plusieurs plages (ils apparaissent plusieurs fois dans le tableau ci-dessous). On intègre dans la catégorie des satellites astronomiques les instruments qui étudient les noyaux et/ou les électrons du rayonnement cosmique ainsi que ceux qui détectent les ondes gravitationnelles.
Les télescopes gamma collectent et mesurent le rayonnement gamma à haute énergie émis par les sources célestes. Ce rayonnement est absorbé par l'atmosphère et doit être observé depuis des ballons à haute altitude (télescopes-ballons ) ou depuis l'espace. Le rayonnement gamma peut être généré par les supernovae, les étoiles à neutrons, les et les trous noirs. Les éruptions gamma, qui dégagent des énergies élevées, ont été également détectées sans qu'on en identifie la provenance.
Nom | Agence spatiale | Date de lancement | Fin de mission | Emplacement |
---|---|---|---|---|
High Energy Astronomy Observatory 3 (HEAO 3) | NASA | 1979-09-20 | 1981-05-29 | eo00486.4Orbite terrestre (486,4–504,9 km) |
Astrorivelatore Gamma ad Immagini LEggero (AGILE) | ASI | 2007-04-23 | — | eo00524Orbite terrestre (524–553 km) |
Compton Gamma Ray Observatory (CGRO) | NASA | 1991-04-05 | 2000-06-04 | eo00362Orbite terrestre (362–457 km) |
COS-B | ESA | 1975-08-09 | 1982-04-25 | eo00339Orbite terrestre (339,6–99,876 km) |
Gamma | RSA | 1990-07-01 | 1992-00-001992 | eo00375Orbite terrestre (375 km) |
Fermi Gamma-ray Space Telescope | NASA | 2008-05-14 | — | eo00550Orbite terrestre (555 km) |
Granat | CNRS & IKI | 1989-12-01 | 1999-05-25 | eo02000Orbite terrestre ( 2 000–200 000 km ) |
High Energy Transient Explorer 2 (HETE 2) | NASA | 2000-10-09 | — | eo00590Orbite terrestre ( 590–650 km ) |
International Gamma-Ray Astrophysics Laboratory (INTEGRAL) | ESA | 2002-10-17 | — | eo00639Orbite terrestre ( 639–153 000 km ) |
Low Energy Gamma Ray Imager (LEGRI) | INTA | 1997-05-19 | 2002-02-00 | eo00600Orbite terrestre (600 km) |
Second Small Astronomy Satellite (SAS 2) | NASA | 1972-11-15 | 1973-06-08 | eo00443Orbite terrestre ( 443–632 km ) |
Swift Gamma Ray Burst Explorer (SWIFT) | NASA | 2004-11-20 | — | eo00585Orbite terrestre ( 585–604 km ) |
Les télescopes ultraviolet effectuent leurs observations dans la gamme des ondes ultraviolet c'est-à-dire entre 100 et 3 200 Å. La lumière dans ces longueurs d'onde est absorbée par l'atmosphère terrestre aussi les observations doivent être réalisées dans la haute atmosphère ou depuis l'espace. Les objets célestes émettant un rayonnement ultraviolet comprennent le Soleil, les autres étoiles et les galaxies.
Nom | Agence spatiale | Date de lancement | Fin de mission | Emplacement |
---|---|---|---|---|
Astro-2 | NASA | 1993-04-02 | 1993-03-18 | eo00349Orbite terrestre (349–363 km) |
Astron | IKI | 1983-03-23 | 1989-06-00 | eo02000Orbite terrestre (2 000–200 000 km) |
Astronomische Nederlandse Satelliet (ANS) | SRON | 1974-08-30 | 1976-06-00 | eo00266Orbite terrestre (266–1 176 km) |
Astrosat | ISRO | 2009-04-00 | — | eo00650Orbite terrestre (650 km) |
Broad Band X-ray Telescope / Astro 1 | NASA | 1990-12-02 | 1990-12-11 | eo00500Orbite terrestre (500 km) |
Copernicus Observatory | NASA | 1972-08-21 | 1980-00-001980 | eo00713Orbite terrestre (713–724 km) |
Cosmic Hot Interstellar Spectrometer (CHIPS) | NASA | 2003-01-13 | — | eo00578Orbite terrestre (578–594 km) |
Extreme Ultraviolet Explorer (EUVE) | NASA | 1992-06-07 | 2002-01-30 | eo00515Orbite terrestre (515–527 km) |
Far Ultraviolet Spectroscopic Explorer (FUSE) | NASA & CNES & CSA | 1999-06-24 | 2007-07-12 | eo00752Orbite terrestre (752–767 km) |
Galaxy Evolution Explorer (GALEX) | NASA | 2003-04-28 | eo00691Orbite terrestre (691–697 km) | |
Hubble | NASA | 1990-04-24 | — | eo00586.47Orbite terrestre (586,47–610,44 km) |
International Ultraviolet Explorer (IUE) | ESA & NASA & SERC | 1978-01-26 | 1996-09-30 | eo32050Orbite terrestre ( 32 050–52 254 km ) |
Korea Advanced Institute of Science and Technology Satellite 4 (Kaistsat 4) | KARI | 2003-09-27 | — | eo00675Orbite terrestre ( 675–695 km ) |
OAO-2 | NASA | 1968-12-07 | 1973-01-00 | eo00749Orbite terrestre (749–758 km) |
Swift Gamma Ray Burst Explorer (Swift) | NASA | 2004-11-20 | — | eo00585Orbite terrestre (585–604 km) |
Tel Aviv University Ultraviolet Explorer (en) (TAUVEX) | Agence spatiale israélienne | ?? | — | — |
WSO-UV | Roscosmos | ?2015 | — | Orbite géosynchrone |
Public Telescope (PST) | Astrofactum | ?2019 | — | Orbite terrestre (800 km) |
Les télescopes à rayons X mesurent le rayonnement X émis par les photons à haute énergie. Ceux-ci ne peuvent pas traverser l'atmosphère et doivent donc être observés soit depuis la haute atmosphère soit depuis l'espace. Plusieurs types d'objets célestes émettent des rayons X depuis les amas de galaxie en passant par les trous noirs ou les noyaux galactiques actifs jusqu'aux objets galactiques tels que les restes de supernovas ou les étoiles et les étoiles doubles comportant une naine blanche... Certains corps du système solaire émettent des rayons X, le plus notable étant la Lune, bien que la majorité du rayonnement X de la Lune provienne de la réflexion de rayons X du Soleil. On considère que la combinaison de nombreuses sources de rayonnement X non identifiées est à l'origine du rayonnement X de fond
Nom | Agence spatiale | Date de lancement | Fin de mission | Emplacement | |
---|---|---|---|---|---|
A Broadband Imaging X-ray All-sky Survey (ABRIXAS) | DLR | 1999-04-28 | 1999-07-01 | eo00549Orbite terrestre ( 549–598 km ) | |
Advanced Satellite for Cosmology and Astrophysics (ASCA) | NASA & ISAS | 1993-02-20 | 2001-03-2 | eo00523.6Orbite terrestre ( 523,6–615,3 km ) | |
AGILE | ASI | 2007-04-23 | — | eo00524Orbite terrestre (524–553 km) | |
Ariel V | Science and Engineering Research Council & NASA | 1974-10-15 | 1980-03-14 | eo00520Orbite terrestre (520 km) | |
Array of Low Energy X-ray Imaging Sensors (Alexis) | LANL | 1993-03-25 | 2005-00-002005 | eo00749Orbite terrestre (749–844 km) | |
Aryabhata | ISRO | 1975-04-19 | 1975-04-23 | eo00563Orbite terrestre (563–619 km) | |
Astron | IKI | 1983-03-23 | 1989-06-00 | eo02000Orbite terrestre (2 000—200 000 km) | |
Astronomische Nederlandse Satelliet (ANS) | SRON | 1974-08-30 | 1976-06-00 | eo00266Orbite terrestre (266–1 176 km) | |
Astrosat | ISRO | 2015-09-28 | — | eo00650Orbite terrestre (650 km) | |
Beppo-SAX | ASI | 1996-04-30 | 2002-04-30 | eo00575Orbite terrestre (575–594 km) | |
Broad Band X-ray Telescope (Astro 1) | NASA | 1990-12-2 | 1990-12-11 | eo00500Orbite terrestre (500 km) | |
Chandra | NASA | 1999-06-23 | — | eo09942Orbite terrestre (9 942–140 000 km) | |
Constellation-X Observatory (en) | NASA | TBA | — | — | |
COS-B | ESA | 1975-08-09 | 1982-04-25 | eo00339.6Orbite terrestre (339,6–99,876 km) | |
Cosmic Radiation Satellite (CORSA) | ISAS | 1976-02-06 | 1976-02-06 | Échec au lancement | |
Dark Universe Observatory | NASA | TBA | — | eo00600Orbite terrestre (600 km) | |
Einstein Observatory (HEAO 2) | NASA | 1978-11-13 | 1981-04-26 | eo00465Orbite terrestre (465–476 km) | |
EXOSAT | ESA | 1983-05-26 | 1986-04-08 | eo00347Orbite terrestre (347–191 709 km) | |
Ginga (Astro-C) | ISAS | 1987-02-05 | 1991-11-01 | eo00517Orbite terrestre (517–708 km) | |
Granat | CNRS & IKI | 1989-12-01 | 1999-05-25 | eo02000Orbite terrestre ( 2 000–200 000 km ) | |
Hakucho | ISAS | 1979-02-21 | 1985-04-16 | eo00421Orbite terrestre (421–433 km) | |
High Energy Astronomy Observatory 1 (HEAO 1) | NASA | 1977-08-12 | 1979-01-09 | eo00445Orbite terrestre (445 km) | |
High Energy Astronomy Observatory 3 (HEAO 3) | NASA | 1979-09-20 | 1981-05-29 | eo00486.4Orbite terrestre (486,4–504,9 km) | |
High Energy Transient Explorer 2 (HETE 2) | NASA | 2000-10-09 | — | eo00590Orbite terrestre (590–650 km) | |
International Gamma-Ray Astrophysics Laboratory (INTEGRAL) | ESA | 2002-10-17 | — | eo00639Orbite terrestre (639–153 000 km) | |
Nuclear Spectroscopic Telescope Array (NuSTAR) | NASA | 2012-06-13 | — | eo00525Orbite terrestre (525 km) | |
ROSAT | NASA & DLR | 1990-06-01 | 1999-02-12 | eo00580Orbite terrestre (580 km) | |
Rossi X-ray Timing Explorer | NASA | 1995-12-30 | eo00409Orbite terrestre (409 km) | ||
Spectrum-X-Gamma | IKI & NASA | 2010-00-002010 | — | — | |
Suzaku (ASTRO-E2) | JAXA & NASA | 2005-06-10 | — | eo00550Orbite terrestre (550 km) | |
Swift Gamma Ray Burst Explorer | NASA | 2004-11-20 | — | eo00585Orbite terrestre (585–604 km) | |
Tenma | ISAS | 1983-02-20 | 1989-01-19 | eo00489Orbite terrestre (489–503 km) | |
Third Small Astronomy Satellite (SAS-C) | NASA | 1975-05-07 | 1979-04-00 | eo00509Orbite terrestre (509–516 km) | |
Uhuru | NASA | 1970-12-12 | 1973-03-00 | eo00531Orbite terrestre (531–572 km) | |
X-Ray Evolving Universe Spectroscopy Mission (XEUS) | ESA | annuléAnnulé | — | — | |
XMM-Newton | ESA | 1999-12-10 | — | eo07365Orbite terrestre ( 7 365–114 000 km ) |
L'astronomie en lumière visible est la forme la plus ancienne de l'observation des astres. Elle porte sur le rayonnement visible (entre 4 000 et 8 000 Å ). Un télescope optique placé dans l'espace ne subit pas les déformations liées à la présence de l'atmosphère terrestre ce qui lui permet de fournir des images avec une résolution plus importante. Les télescopes optiques sont utilisés pour étudier, entre autres, les àétoilesà, les à, les ànébuleusesà et les àdisques protoplanétaires.
Nom | Agence spatiale | Date de lancement | Fin de mission | Emplacement |
---|---|---|---|---|
Astrosat | ISRO | 2009-04-00 | — | eo00650Orbite terrestre (650 km) |
COROT | CNES & ESA | 2006-12-27 | eo00872Orbite terrestre (872–884 km) | |
Dark Energy Space Telescope | NASA & DOE | Non définie | — | — |
Gaia | ESA |
prévu en 2013-12-19
|
— | Point de Lagrange L2 (Lissajous) |
Hipparcos | ESA |
1989-08-08
|
1993-04-00
|
eo00223Orbite terrestre (223–35 632 km) |
Hubble | NASA |
1990-04-24
|
— | eo00586.47Orbite terrestre (586,47–610,44 km) |
Kepler | NASA |
2009-03-06
|
30 octobre 2018 | Point de Lagrange L2 |
MOST | CSA |
2003-06-30
|
— | |
SIM Lite Astrometric Observatory | NASA | Annulé | — | — |
Swift Gamma Ray Burst Explorer | NASA |
2004-11-20
|
— | eo00585Orbite terrestre (585–604 km) |
Terrestrial Planet Finder | NASA | Annulé | — | — |
Le rayonnement infrarouge a une énergie plus faible que la lumière visible et est donc émis par des objets plus froids. Ce rayonnement permet d'observer les objets suivants : les étoiles froides dont les naines brunes, les nébuleuses et les galaxies avec un important décalage vers le roug.
Nom | Agence spatiale | Date de lancement | Fin de mission | Emplacement | |
---|---|---|---|---|---|
Akari (ASTRO-F) | JAXA |
2006-02-21
|
24 novembre 2011 | eo00586.47Orbite terrestre (586,47–610,44 km) | |
Darwin | ESA | Annulé | — | lagrangePoint de Lagrange L2 | |
Herschel | ESA & NASA |
2009-05-06
|
17 juin 2013 | lagrangePoint de Lagrange L2 | |
IRAS | NASA |
1983-01-25
|
1983-11-21
|
eo00889Orbite terrestre (889–903 km) | |
Infrared Space Observatory (ISO) | ESA |
1995-11-17
|
1998-05-16
|
eo01000Orbite terrestre (1 000–70 500 km) | |
Infrared Telescope in Space | ISAS & NASDA |
1995-03-18
|
1995-03-25
|
eo00486Orbite terrestre (486 km) | |
James Webb Space Telescope | NASA | 2018-00-0025 décembre 2021 | — | — | |
Midcourse Space Experiment (MSX) | USN |
1996-04-24
|
1997-02-26
|
eo00900Orbite terrestre (900 km) | |
Spitzer Space Telescope | NASA |
2003-08-25
|
|
so0.98Orbite solaire (0,98–1,02 AU ) | |
Submillimeter Wave Astronomy Satellite (SWAS) | NASA |
1998-12-06
|
— | eo00638Orbite terrestre (638–651 km) | |
Terrestrial Planet Finder | NASA | TBA | — | — | |
Wide Field Infrared Explorer (WIRE) | NASA |
1999-03-05
|
10 mai 2011 | — | |
Wide-Field Infrared Survey Explorer (WISE) | NASA |
|
— | eo00500 Orbite terrestre (500 km) |
L'atmosphère est transparente pour les ondes radio aussi les radio-télescopes placés dans l'espace sont utilisés généralement pour réaliser de l'interférométrie à très longue base. Un télescope est basé sur Terre tandis qu'un observatoire est placé dans l'espace : en synchronisant les signaux collectés par ces deux sources on simule un radio-télescope dont la taille serait la distance existant entre les deux instruments. Les observations effectuées avec ce type d'instrument portent sur les restes de supernovae, les lentilles gravitationnelles, les masers, les galaxies à sursaut de formation d'étoiles ainsi que beaucoup d'autres objets célestes.
Nom | Agence spatiale | Date de lancement | Fin de mission | Emplacement | |
---|---|---|---|---|---|
Highly Advanced Laboratory for Communications and Astronomy (HALCA, or VSOP) | ISAS |
1997-02-12
|
2005-11-30
|
eo00560Orbite terrestre (560–21 400 km) | |
RadioAstron | IKI | 2011 | — | eo10000Orbite terrestre ( 10 000–390 000 km ) | |
VSOP-2 | JAXA | 2012-00-002012 | — | — |
Aux fréquences millimétriques, les photons sont très nombreux mais ont très peu d'énergie. Il faut donc en collecter beaucoup. Ce rayonnement permet de mesurer le fond diffus cosmologique, la distribution des radio-sources, ainsi que l'effet Sunyaev-Zel'dovich, ainsi que le rayonnement synchrotron et le rayonnement continu de freinage de notre galaxie.
Nom | Agence spatiale | Date de lancement | Fin de mission | Emplacement |
---|---|---|---|---|
COBE | NASA |
1989-11-18
|
1993-12-23
|
eo00900Orbite terrestre (900 km) |
Odin | SSC |
2001-02-20
|
— | eo00622Orbite terrestre (622 km) |
Planck | ESA |
2009-05-06
|
|
lagrange>Point de Lagrange L2 |
WMAP | NASA |
2001-06-30
|
19 août 2010 | lagrangePoint de Lagrange L2 |
Certains observatoires spatiaux sont spécialisés dans la détection du rayonnement cosmique et des électrons. Ceux-ci peuvent être émis par le Soleil, notre galaxie (rayonnement cosmique) et des sources extra-galactiques (rayonnement cosmique extra-galactique). Il existe également un rayonnement cosmique à haute énergie émis par les noyaux des galaxies actives>.
Nom | Agence spatiale | Date de lancement | Fin de mission | Emplacement | |
---|---|---|---|---|---|
High Energy Astrophysics Observatory 3 (HEAO 3) | NASA |
1979-09-20
|
1981-05-29
|
eo0046.4Orbite terrestre (486,4–504,9 km) | |
Astromag Free-Flyer | NASA |
2005-01-01
|
— | eo00500Orbite terrestre (500 km) | |
Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) | ASI, INFN, RSA, DLR & SNSB |
2006-05-15
|
— | eo00350Orbite terrestre (350–610 km) | |
Spectromètre magnétique Alpha (AMS) | ESA & NASA |
2011-04-19
|
— | eo00330Station spatiale internationale (Orbite terrestre 330–410 km) |
L’observation des ondes gravitationnelles, prédites par la relativité générale, est un nouveau domaine. Il existe un projet d'observatoire spatial, eLISA (Evolved Laser Interferometer Space Antenna), de l’Agence spatiale européenne dont le lancement n'interviendrait pas avant 2034 si le projet est retenu. Le télescope utilise la technique de l'interférométrie.
Nom | Agence spatiale | Date de lancement | Fin de mission | Emplacement |
---|---|---|---|---|
Evolved Laser Interferometer Space Antenna (eLISA) | ESA | Projet | — | so1Orbite solaire (environ 1 UA ; sur l'orbite terrestre) |
L'astronomie en lumière visible est la forme la plus ancienne de l'observation des astres. Elle porte sur le rayonnement visible (entre 4 000 et 8 000 Å ). Un télescope optique placé dans l'espace ne subit pas les déformations liées à la présence de l'atmosphère terrestre ce qui lui permet de fournir des images avec une résolution plus importante. Les télescopes optiques sont utilisés pour étudier, entre autres, les àétoilesà, les à, les ànébuleusesà et les àdisques protoplanétaires.
Nom | Agence spatiale | Date de lancement | Fin de mission | Emplacement |
---|---|---|---|---|
Astrosat | ISRO |
2009-04-00
|
— | eo00650Orbite terrestre (650 km) |
COROT | CNES & ESA |
2006-12-27
|
|
eo00872Orbite terrestre (872–884 km) |
Dark Energy Space Telescope | NASA & DOE | Non définie | — | — |
Gaia | ESA |
prévu en 2013-12-19
|
— | Point de Lagrange L2 (Lissajous) |
Hipparcos | ESA |
1989-08-08
|
1993-04-00
|
eo00223Orbite terrestre (223–35 632 km) |
Hubble | NASA |
1990-04-24
|
— | eo00586.47Orbite terrestre (586,47–610,44 km) |
Kepler | NASA |
2009-03-06
|
30 octobre 2018 | Point de Lagrange L2 |
MOST | CSA |
2003-06-30
|
— | |
SIM Lite Astrometric Observatory | NASA | Annulé | — | — |
Swift Gamma Ray Burst Explorer | NASA |
2004-11-20
|
— | eo00585Orbite terrestre (585–604 km) |
Terrestrial Planet Finder | NASA | Annulé | — | — |
Le rayonnement infrarouge a une énergie plus faible que la lumière visible et est donc émis par des objets plus froids. Ce rayonnement permet d'observer les objets suivants : les étoiles froides dont les naines brunes, les nébuleuses et les galaxies avec un important décalage vers le rouge.
Nom | Agence spatiale | Date de lancement | Fin de mission | Emplacement | |
---|---|---|---|---|---|
Akari (ASTRO-F) | JAXA |
2006-02-21
|
24 novembre 2011 | eo00586.47Orbite terrestre (586,47–610,44 km) | |
Darwin | ESA | Annulé | — | lagrangePoint de Lagrange L2 | |
Herschel | ESA & NASA |
2009-05-06
|
17 juin 2013 | lagrangePoint de Lagrange L2 | |
IRAS | NASA |
1983-01-25
|
1983-11-21
|
eo00889Orbite terrestre (889–903 km) | |
Infrared Space Observatory (ISO) | ESA |
1995-11-17
|
1998-05-16
|
eo01000Orbite terrestre (1 000–70 500 km) | |
Infrared Telescope in Space | ISAS & NASDA |
1995-03-18
|
1995-03-25
|
eo00486Orbite terrestre (486 km) | |
James Webb Space Telescope | NASA | 2018-00-0025 décembre 2021 | — | — | |
Midcourse Space Experiment (MSX) | USN |
1996-04-24
|
1997-02-26
|
eo00900Orbite terrestre (900 km) | |
Spitzer Space Telescope | NASA |
2003-08-25
|
|
so0.98Orbite solaire (0,98–1,02 AU ) | |
Submillimeter Wave Astronomy Satellite (SWAS) | NASA |
1998-12-06
|
— | eo00638Orbite terrestre (638–651 km) | |
Terrestrial Planet Finder | NASA | TBA | — | — | |
Wide Field Infrared Explorer (WIRE) | NASA |
1999-03-05
|
10 mai 2011 | — | |
Wide-Field Infrared Survey Explorer (WISE) | NASA |
|
— | eo00500 Orbite terrestre (500 km) |
Contenu soumis à la licence CC-BY-SA. Source : Article Télescope spatial de Wikipédia en français (auteurs)